SOFTWARE SECTION

SOFTWARE APPL|CATION

Robert Uiterwick’s Floppy ROM* BASIC was an im-
portant addition to my SWTPC 6800 computer system,
but | needed something more convenient than the USER
function to permit machine-language operations. The
need was met by what | call a PATsubroutine interpreter.

Floppy ROM BASIC doesn’t care what you put after
the PAT in PATCH so long as you don’t overflow the in-
put buffer. If you want to key in a sequence of machine-
language instructions, you may. The trick, then, is to
convert the ASCII character sequence into true machine
code and execute it when the PATch command is exe-
cuted by BASIC.

First you must intercept the jump to MIKBUG control
(address EOE3) which results when BASIC sees g PATch
command. This address is stored at location Q8FE and
must be changed to the address of the PATsubroutine
interpreter. (You must aiso change the code at location
07F9 from 1200 to a value greater than the end address
of the space required by your PATsubroutine intgrpreter.)

The interpreter as listed here stores the cpnverted
machine code beginning at location 1359, uses four
bytes in the MIKBUG scratchpad for temporary storage
of index register contents, calls a MIKBUG routine to aid
in converting ASCIl to hexadecimal, and jumps to
MIKBUG control at EOE3 in case the conventional PATCH
function is actually required.

Floppy ROM BASIC terminates the PATsubroutine
with hexadecimal ‘1E’, and at execution time lacation 34
contains the address of the first byte following the
PATCH code in program storage (i.e., the first character
of your PATsubroutine).

If you want to SAVE and LOAD a program containing a
PATsubroutine, the maximum size of the subroutine is
62 characters or 31 bytes, which is adequate for many
purposes. For other cases, successive PATsubroutines
may be used, or a machine-language subroutine may be
stored in high memory (say at location 1F00) using PAT-
subroutines and then invoked through the command
PAT7E1FO00.

Variables may be accessed by PATsubroutines by us-
ing the variable-storage pointer at location 2A. For ex-
ample, if the first reference to a variable in your program
is “A=100", location 2A contains an address at which is
stored the hexadecimal number 4120010000000003,

*Floppy ROM is a trademark of INTERFACE AGE Magazine,
Cerritos, CA 90701.

140 INTERFACE AGE

which is the name of the variable “A’ followed by the
BCD mantissa and binary exponent of the value of A.

Following are some examples of PATsubroutines:

Store byte xx at location yyyy:
PAT86xxB7yyyy

Display on the terminal the contents of location yyyy:
PATCEyyyyBDEOCA

Test interrupt flag (bit 7 at location 801F in this ex-
ample) to detect operator intervention request and reset
flag: ‘

PAT7D801F2A03BDE1ACB6801E

Add a key-entry value to variable A assuming that
“A=100" was the first reference to a variable in the pro-
gram:

PATDE2ABDE1AC16270B4F8B011924026C025A26F6A703
Store a subroutine at 1F00:

PATCE1FO0FF1311 (Change storage address)
PATaabbcec. . . (Store subroutine)
PATCE1359FF 1311 (Change storage address back)
*
L ]
L ]
PAT7E1F00 (Execute subroutine)

A subroutine of any size can be stored in sections of 31
bytes or less by changing the storage address before
each section is stored.

If you want to specify the conventional PATCH com-
mand, use “PAT”. “PATCH” may not work unitess you
add a check for “CH” to the PATsubroutine interpreter
listed here. If you are using MIKBUG to help with the
conversion, “PATCH"” will work by accident because the
“H” in “PATCH”, not being a valid hexadecimal digit,
will cause a jump to CONTRL to signal an error condition.

1t should be apparent that by using the scheme de-
scribed above, complete machine-language flexibility is
available as an integral part of your BASIC program with-
out special provisions for loading and linking at run time.
The concept should be adaptable to other BASIC inter-
preters and other CPUs, and it is even conceivable that
an overlay structure could be effected by using PATsub-
routines to load and execute subroutines as needed.)

FEBRUARY 1979



SOFTWARE SECTION : SOFTWARE APPLICATION

FEBRUARY 1979 A INTERFACE AGE 141





